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It is well known that the homotopy category of connected CW-complexes X 
whose homotopy groups n;(X) are trivial for i> 1 is equivalent to the category of 
groups. One of the objects of this paper is to prove a similar equivalence for the con- 
nected CW-complexes X whose homotopy groups are trivial for i > n + 1 (where n is 
a fixed non-negative integer). For n = 1 the notion of crossed module invented by 
J.H.C. Whitehead [13], replaces that of group and gives a satisfactory answer. We 
reformulate the notion of crossed module so that it can be generalized to any n. This 
generalization is called an ‘n-cat-group’, which is a group together with 2n endo- 
morphisms satisfying some nice conditions (see 1.2 for a precise definition). With 
this definition we prove that the homotopy category of connected CW-complexes X 
such that Xi(X) = 0 for i > n + 1 is equivalent to a certain category of fractions (i.e. a 
localization) of the category of n-cat-groups. 

The main application concerns a group-theoretic interpretation of some co- 
homology groups. It is well known [lo, p. 1121 that the cohomology group 
H2(G; A) of the group G with coefficients in the G-module A is in one-to-one cor- 
respondence with the set of extensions of G by A inducing the prescribed G-module 
structure on A. Use of n-cat-groups gives a similar group-theoretic interpretation 
for the higher cohomology groups H”(G; A) and H”(K(C, k); A) where K(C, k) is an 
Eilenberg-MacLane space with k 2 1. In [8] we proved that crossed modules could 
be used to interpret a relative cohomology group. Here we show that the notion of 
n-cat-group is particularly suitable to interpret some ‘hyper-relative’ cohomology 
groups. The usefulness of this last result appears in its application to algebraic K- 
theory where it leads to explicit computations [4]. This was in fact our primary 
motivation for a generalization of crossed modules. 

Section 1 contains the definitions of n-cat-groups and of n-cubes of fibrations. 
There are two functors: 

5 : (n-cubes of fibrations) + (n-cat-groups) 
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and 
.A : (n-cat-groups) + (n-cubes of fibrations) 

which bear the same properties (adjointness) as the functors nl (= fundamental 
group) and B (= classifying space functor) respectively. The properties of these 
functors and the equivalences of categories are stated in this section. 

In Section 2 we construct the functors Y and .IA and prove their properties. 
In Section 3 we define the mapping cone of non-abelian group complexes (which 

might be of independent interest) and use it to compute the homotopy groups of the 
spaces arising from n-cat-groups. 

Section 4 contains the group theoretic interpretation of some cohomology groups. 
In Section 5 we carry out a detailed study of the case n = 2, and we give an appli- 

cation. 
Unless otherwise stated all spaces are connected base-pointed CW-complexes and 

all maps preserve base points. A connected space S is said to be n-connected if 
xi(S) =0 for i<n. The nerve of a discrete group G is a simplicial set denoted P*G 
where fi,,G=Gx.-* x G (n times). Its geometric realization I/%,,G 1 is the classifying 
space of G and is denoted BG. 

1. n-cat-groups, definitions and results 

1.1. Consider a simplicial group 

where N is identified with a subgroup of G by the degeneracy map o : N+ G. The 
relations among face and degeneracy maps in a simplicial group imply s IN = b IN = 
id,,,. Moreover, as we shall see in Lemma 2.2, if the Moore complex of this simplicial 
group is of length one, that is 

. . . 1 + 1 . . . a*-* 1 -+Kers-N, 

then the face maps s and b satisfy the following property: the group [Ker s, Ker 61 
generated by the commutators [x, y] =xyx-‘y-t, x E Ker s, y E Ker b is trivial. This 
remark leads to the following 

Definition. A categorical group (or l-cat-group) is a group G together with a sub- 
group N and two homomorphisms (called structural homomorphisms) s, 6: G + N 
satisfying the following conditions: 

(i) 
(ii) 

sI,=b/,=idNr 
[ Ker s, Ker 6]= 1. 

This l-cat-group is denoted by @ = (G; N) if no confusion can arise. A morphism of 
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l-cat-groups @ + (9’ is a group homomorphism f: G -+ G’ such that f(N)CN’ and 
sy=fl,.,s,b’f=fi,vb. 

The following definition is motivated by the notion of n-simplicial group. 

1.2. Definition. An n-cafegoricaf group (or n-cat-group for short) @ is a group G 
together with n categorical structures which commute pairwise, that is n subgroups 

NIV **a, N,, of G and 2n group homomorphisms sl, 6,: G -, N,, i = 1, . . . . n, such that 
for lliln, Iljln, 

(i) s;i,v,=bil,v,=id,v,, 
(ii) [Ker Sip Ker b;] = 1, 

(iii) S,Sj=SjSi, b;bj=b,bi, and biS,=s,b,, i#j. 

In (iii) and from now on the morphisms Si and bi are considered as endomorphisms 
of G by using the inclusions Ni- G. When no confusion can arise @ is denoted by 

(G; NI, . . . . N,,). A morphism of n-cat-groups f: 6 -+ (3 is a group homomorphism 
f: G+ G’ such that S;f = fSi and b;f = fbi for i = 1, . . . . n. By convention a O-cat- 
group is just a group. 

1.3. Let (-1, 0, 1) be the category associated to the ordered set -1 CO< 1. The 
Cartesian product of n copies of (-l,O, 1) is denoted (-LO, I)“. An object of 
(-l,O, 1)“is an n-tuple a=(a,, . . ..cY.) with cr;=-1 or 0 or 1. 

Definition. An n-cube offibrations is a functor X from (-1, 0, 1)” to the category of 
connected spaces such that for every i the sequence 

X(a ~,...~ai-I~-l,ai+l....,a,)~X(a,,...,ai-~,O,ai+l,...,a,) 

+ X(a,, . . . . ai-1, l,ai+l,...,an) 

is a fibration. 
We will frequently write W” instead of X(a). By convention (-l,O, 1)’ is the 

category with one element and one morphism. Therefore a O-cube of fibrations is 
just a connected space. For n = 1 a l-cube of fibrations is an ordinary fibration of 
connected spaces X-’ + X0 -, X t. For n = 2 a 2-cube of fibrations is a commutative 
diagram of connected spaces 

x-1. I - p - xl.1 

where each row and each column is a fibration. 
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A morphism X + X’ of n-cubes of fibrations is a transformation of functors. It is 
said to be a homotopy equivalence iff for every a, the map X” + X’n is a homotopy 
equivalence of spaces. 

If a=(a,, . . . . ct,) is such that (Y; = -1 or 0 for every i, it is said to be negative, 
written a 5 0. 

1.4. Theorem. There are two functors 

and 
.2l : (n-cat-groups) * (n-cubes of fibrations) 

9 : (n-cubes of fibrations) -, (n-cat-groups) 

such that (a) if C3 is an n-cat-group then (~(3))~ is an Eilenberg-MacLane space of 
type K(n, 1) when asO, (b) the composite W is the identity, (c)for any n-cube of 
fibrations X there exists a map of n-cubes X -, .A?+ Y(X), well-defined up to homotopy, 
such that for every a, n,(Xa) -+ n,(.a~(X)“) is the identity of nl(Xa). 

The proof is given in Section 2. 
For n = 0 this theorem is well known: the functor 5’ is nt, the functor & is the 

classifying space functor B. Property (a) says that BG is a K(G, l), property (b) says 
that n,(BG) = G and property (c) says that for any connected space X there is a 
map, well-defined up to homotopy, X-+ Bn,X inducing the identity on nt. 

The homotopy category of n-cubes of fibrations is the category whose objects are 
n-cubes of fibrations and whose morphisms are homotopy classes of morphisms. 
The following result is an immediate consequence of Theorem 1.4. 

1.5. Corollary. The category of n-cat-groups is equivalent to the homotopy 
category of n-cubes of fibrations X such that Xa is a K(n, 1) for every a I 0. 

For n =0 this corollary says that the homotopy category of K(x, I)-spaces is 
equivalent to the category of groups. 

For n = 1 it can be interpreted as an equivalence of the homotopy category of 
fibrations of the type BM -, BN + X (where A4 and N are discrete groups) with the 
category of crossed modules (see Section 2). 

1.6. Denote the space (.J@)l*l*....l by B@. It comes easily from Theorem 1.4 that 
B@ is connected and that n;(B@) vanishes for i > n + 1. Therefore B@ is (n + l)-co- 
connected (cf. 2.17). There is an algebraic device to get the homotopy groups of BC3 
from a,. In fact there is a complex of (non-abelian) groups C*(a) whose homology 
groups are the homotopy groups of B@ (see Proposition 3.4). A morphism of n-cat- 
groups @+@’ induces a morphism of complexes. Such a morphism is called a 
quasi-isomorphism if it induces an isomorphism on homology. The set of quasi- 
isomorphisms is denoted by .Z. 
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1.7. Theorem. The homotopy category of (n + I)-coconnected CW-complexes is 
equivalent to the category of fracrions (n-car-groups)@-‘). 

The notation (n-cat-groups)(C-‘) stands for the category of fractions of (n-cat- 
groups) where all the quasi-isomorphisms (elements of C) have been inverted [3]. 
The proof of this theorem is in Section 3. 

2. Equivalence between n-cat-groups and some n-cubes of fibrations 

After some preliminaries on crossed modules we prove Theorem 1.4 for n = 1 and 
then in the general case. 

2.1. Definition. A crossed module is a group homomorphism fi :M+N together 
with an action of N on M, denoted by (n, m) +, “m and satisfying the following con- 
ditions: 

(a) for all nENand mcM, p(“m)=np(m)n-I, 
(b) for all m and m’ in M, p(“)rn’ = mm’m -I. 

Examples. Every normal monomorphism ,U is a crossed module for the conjugation 
of N on M. Let M be a group and take N= Aut(M). Then ,U sends m to the inner 
automorphism m (-) m-l. This obviously is a crossed module with respect to the 
action of Aut(M) on M. 

Part of the following result has already been noted by several authors (see for 
instance [ 11). 

2.2. Lemma. The following data are equivalent: 
(1) a crossed module ,u : M + N, 
(2) a l-cat-group B = (G; N), 
(3) a group object in the category of categories, 
(4) a simplicial group (a)* whose Moore complex is of length one. 

Proof. (1) w (2). Starting with the crossed module p :M+ N the group G is 
defined as the semi-direct product G =M>aN. The structural morphisms are 
s(m, n) = n and b(m, n) = p(m)n, which obviously satisfy axiom (i) of 1.1. On the 
other hand, starting with a l-cat-group (9 we define M=Kers and p = blKers. The 
action of N on M is the conjugation in G. 

It remains to prove that axiom (b) for crossed modules is equivalent to axiom (ii) 
for l-cat-groups. If xE Ker s and y E Ker b, then x= (m, 1) and y = (m’-I, p(m’)) with 
m and m’E M. We have xy = (mm’-‘, p(m’)) and yx= (m’-‘(p(m’)m), ,u(m’)). There- 
fore the equality xy = yx is equivalent to m’mm’-’ = pcm’)m. 

(2) e (3). Starting with a l-cat-group (8 = (G; N) we construct a small category 
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with objects the elements of N and morphisms the elements of G. The source (resp. 
target) of the morphism g EC is s(g) (resp. b(g)). The morphisms g and h are 
composable iff b(g)=s(h) and their composite is hag =hs(h)-lg. The axioms of a 
category are clearly satisfied. 

It remains to prove that the composition is a group homomorphism. If g’ and h’ 
are two other composable morphisms, this property reads 

hs(h)-‘gh’s(h’)_‘g’= hh’s(hh’)-‘gg’. 

After simplification use of the equality s(h)=b(g) proves that it is equivalent to 
b(g)-‘gh’s(h’)-t = h’s(h’)-‘b(g)-‘g. As any element of Ker s (resp. Ker b) is of the 
form h’s(&)-’ (resp. b(g)-‘g) this equality is equivalent to [Kers, Ker 6]= 1. In 
conclusion, composition in this category is a group homomorphism iff axiom (ii) for 
l-cat-groups is valid. 

It is obvious how to obtain the l-cat-group from the category in view of the 
preceding discussion. 

(3)o (4). Recall that if K* is a simplicial group, the Moore complex of K* is 
obtained by taking for each n the subgroup n;=, Ker d; of K,; the restriction of de to 
this subgroup is the differential of the complex. The homology groups of the Moore 
complex are the homotopy groups of the geometric realization IK*I. 

Starting from the category we obtain a simplicial set by taking the nerve. In fact 
this simplicial set is a simplicial group (a*) because the category is a group object in 
the category of categories. Its Moore complex is *a* 1 -+ 1 *M+ N, which is of 
length 1. 

Suppose that the Moore complex of K, is of length one, that is 

There is a l-cat-group associated to this situation. Put G = K, and N = image of KC, 
in K, by the degeneracy map. The structural morphisms s and b are given by s = dl, 
b =do. Axiom (i) of l-cat-groups follows from the relations between face and 
degeneracy maps. To prove axiom (ii) it is sufficient to see that for XE Ker dl and 
y E Ker d,, the element [se(x), sO(y)s,(y)-‘1 of K2 (where so and sI are the degeneracy 
maps) is in fact in Ker d, fl Ker d2 and its image by do is [x, JJ]. As Ker d, n Ker dz = 1, 
it follows that [Ker do, Ker d,] = 1. 

So (G; N) is a l-cat-group and use of the previous equivalence gives the desired 
category with Obj = K. and Mor = K,. c 

Proof of Theorem 1.4 for n = 1. The functor J for n = 1. We first construct the 
space B@ where B =(G; N) is a l-cat-group. Let (@)+ be the simplicial group 
associated to @ (see 2.2). If we replace each group (a),, by its nerve we obtain a bi- 
simplicial set denoted p*(a)*, explicitly Pm(@)” = (@), x *-a x (a,), (m times). 

2.3. Definition. The classifying space B3 of the l-cat-group C3 is the geometric 
realization of the bisimplicial set p*(B)*, that is BC3 = I/?*(@)*/. 



Spaces with finitely many non-trivial homoropy groups 185 

Remark. It is immediate that, if G = N and s = id,v = 6, then BC3 = BN. If G = N >Q N 
(semi-direct product with conjugation) and s(n, n’) = n’, b(n, n’) = nn’, then B@ is 
contractible. 

The following lemma will be useful in the sequel. 

2.4. Lemma. Let 1 + (3,’ -, (3 + (3” + 1 be an exact sequence of l-cat-groups. Then 
B6 ‘+ B8 -, B@” is a fibration. 

Proof. By exact sequence we mean that the maps are morphisms of l-cat-groups 
and that I-+ G’- G + G” * 1 is a short exact sequence of groups. _ ____ 

The simplicial map A/I&@)*-vl/I&“)* where A is the diagonal is a Kan fibra- 
tion (see [12] for a proof when A& is replaced by the functor #‘) and the exactness 
ensures that the fiber is A/$,(@‘)*. The lemma follows from the fact that the geo- 
metric realization of a bisimplicial set is homeomorphic to the geometric realization 
of its diagonal. Cl 

The functors Tn : (l-cat-groups) -, (l-cat-groups), a = -LO, 1, are defined by 

r-*@=(M;M) withs=b=idM(recallM=Kers), 

f O@ = (A4 >Q G; G) with s(m, g) =g and b(m, g) = mg, 

P@ = (3). 

There are natural transformations of functors. 

and 
&:r-‘@-+f%, m - (1, m-lb(m)) 

I : l-O@ -+ I-‘@,, (m, g) - mb(g). 

2.5. Lemma. Let C3 be a l-cat-group. Then BT-‘@ + Bra@ + Bf ‘(3 is a fibration. 

Proof. The sequence of l-cat-groups 1 +~-l@+~o@~-*l~+l is exact, so it 

suffices to apply Lemma 2.4. q 

Finally the functor S? : (l-cat-groups) --, (l-cube of fibrations) is defined by 

~~=(BT-‘~jBBTO~iBBT’~). 

2.6. The functor Y for n = 1. Let X=(Fd Y-+X) be a fibration of connected 
spaces. Let 

Z*=(*.*Yx,Yx,Y SYxxY: Y) 

be the simplicial space obtained from f by taking iterated fiber products. Put 
G = R,(Y xx Y), N= xl Y, s (resp. b) being induced by the first (resp. second) projec- 
tion. 
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2.7. Definition and Lemma. Ler X be afibration then y(X) = (nl(Y xx Y); n,y) is a 

1 -cat-group. 

Proof. Taking z1 dimensionwise in Z* we get a simplicial group beginning with 

s, b 
G : N. 

The Moore complex of this simplicial group is **. 1 + 1 -+ z,F+ n,Y. Then, by 
Lemma 2.2, T(X) = (G; N) is a l-cat-group. 0 

Remark. The fact that a fibration gives rise to a l-cat-group, that is a crossed 
module, was first discovered by J.H.C. Whitehead [13]. 

2.8. Proof of property (a) of Theorem 1.4 for n = 1. We must prove that Bf -‘a 
and I?r”@ are K(n, I)-spaces. We have BT-*@ = B(M; M) = BM which is a K(M, 1). 
For Br”6 we consider the l-cat-group To@ = (N; N). There is an exact sequence of 
1 -cat-groups 

(1; 1) - (M>QM;M) - I-O@ 2 P8 - (1; 1) 

where 0 :M >Q G + N is given by 13(m, g) =s(g). By Lemma 2.4 this yields a fibration 

B(M>QM;M) - BP@ - BP@. 

As the fiber is contractible, the last map is a homotopy equivalence and Br’oi is 
homotopy equivalent to B(N; N) = BN. So the fibration B@ is homotopy equivalent 
to BM* BN+ B@. 0 

Remark. There is a morphism [ :T”oi -+ Y”@ given by n y (1, n) and we have 
Ooc=id. 

2.9. Proof of property (b) of Theorem 1.4 for n = 1. We have to show that 
?+8’@) = @. To compute n,( Y xx Y) where Y = BT”@ and X = BC3 we consider the 
following commutative square: 

B(G; G) *’ -Bl-“@=Y 

y=Br”@ 2 B@=X 

where u(g) = (1, s(g)g-‘b(g)) EM x G and u(g) = (1, s(g)) EM >Q G (U is a group 
homomorphism because of axiom (ii)). By Lemma 2.4 the fibers of the vertical maps 
are both equal to B(M;M) and Bu induces the identity on them. Therefore this 
square is Cartesian and BG = B(G; G) = Y xx Y. We have thus proved n,(Y xx Y) = 
G. Moreover n,Y = N and u (resp. U) induces s (resp. b), hence we have proved that 
Y(S?@)=@. 0 
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2.10. Proof of property (c) of Theorem 1.4 for n = 1. Let If=(F- Y-+X) be a 
fibration of connected spaces. First we construct a map X-B 5(X) well-defined up 
to homotopy. 

In 2.6 we have constructed a simplicial space Z, associated to Y-X. Let Z; 
(resp. ZT) be the simplicial set associated to id : X-X (resp. F- (pt)). For every n 
the sequence Z;d Z,- Z;, is a fibration, therefore by the realization lemma 

IZZl + IZ*I --* IZ 5 is a quasi-fibration. It is immediate that iZ;l is contractible and I 
that lZ;l =X, hence we get a natural homotopy equivalence /Z,/ ‘X. 

By definition of the functor 4 the simplicial group :9(X) is ([n] - nl Z,). Up to 
homeomorphism the space B:g(X) can be obtained from the bisimplicial set 
P*([n]) - nlZn) by taking the geometric realization in one direction and then in the 
other direction, that is B:g(X) = j[n] +. Bn, Z,I. 

Now we replace Z, by the homotopy equivalent space ISin Z,I where Sin Z, is the 
reduced simplicial complex of Z,. There is a canonical map [Sin Z,,l--) Bn I Z, which 
induces an isomorphism on nl; therefore there are canonical maps 

X c l[n]- ISin Z,,ll + I[n]-Bn,Z,I 2 B:q(X) 

which induce isomorphisms on nl. 
To finish the proof we put y-IX =( *-*F+F), y”X=(F-+YxxY+Y) and 

y’3E =X. For 01= -1, 0 or 1 there is an equality (r”x)’ = P. Moreover there are 
natural transformations y-*X -+ y”3E + y’T which induce X-l + W”+ X’. Applying the 
previous construction to the ya’x’s gives the commutative diagram: 

B5y-‘X - Byy”X - BSy’X. 

Use of the identities 9ya3E = P?J’X gives the desired map X + .3!g(3E). 
We now proceed with the proof of the general case. 

2.11. The functor .S? : (n-cat-groups) -+ (n-cubes of fibrations). Let @ = (G; N,, . . . , 
N,,) be an n-cat-group, we first construct its classifying space B@. Use of the first 
categorical structure (index 1) yields a simplicial group 

(-.- G x,,,, G s G : N,) 

as in Lemma 2.2. The remaining (n - I)-categorical structures induce on each group 
N,, G, G xN, G, . . . a structure of (n - 1)-cat-group. Because of axiom (iii) the face 
and degeneracy operators are morphisms of (n - I)-cat-groups. Iterating this pro- 
cedure gives an n-simplicial group (a,)++ such that (@),, ...I = G, (C+), ...o...I =1L:- (0 in 
position i and 1 otherwise). Replacing in (a,)* each group by its nerve yields an 
(n + I)-simplicial set p*(a)*. 
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2.12. Definition. The classtfying space of the n-categorical group C$ is the geo- 

metric realization of the (n + I)-simplicial set /I*(@),, that is B@ = I/%,(@)Sj. 
For any i= 1, . . . . n and (Y = -1, 0, 1 the functor rja: (n-cat-groups) + (n-cat- 

groups) is the functor P applied with respect to the ith categorical structure: 

r;:-l@=((Mj;N,nM, ,..., A4, ,..., N,,nMi), whereMj=Kersi, 

~“@=((M;>aG;(N,fIMi)>aN ,,..., G ,..., (N,,fIM;)>aN,,), 

&‘@=o). 

As in the case of l-cat-groups there are transformations of functors 

r;-‘($j Ei rp(Jj li r;i’($j 

which give short exact sequences of n-cat-groups. For a= (al, . . . . CC,) we put 
rQ = rp1 o-.*or~. This is a functor from the category of n-cat-groups to itself. 

2.13. Lemma. Let a’, (r and a” be such that al= -1, Cli =O, a,!‘= 1 (i fixed) and 
czj = ~j = a;’ for j # i. Then for any n-cat-group @ the sequence 

BP’@ - BP@ - BP’@ 

is a fibration. 

Proof. This follows from Lemma 2.4. 0 

As a consequence we can give the following 

Definition. The functor 3: (n-cat-groups) -+ (n-cubes of fibrations) is given by 
(.3@)a=.3P@, the maps being induced by the Ei and li’s. Note that (3’@)‘1”“= 
Br”““@ =&3j). 

2.14. The functor 5 : (n-cubes of fibrations) + (n-cat-groups). Let X : (0, l)“- 

(connected spaces) be an n-cube of fibrations. Use of the construction of the simpli- 
cial space Z, associated to a fibration (cf. 2.6) permits us to replace each fibration in 
the direction n by a simplicial space and gives a simplicial (n - l)-cube of fibrations. 
Iterating this construction we get an n-simplicial space Z,. By definition G = 
TC~(Z,~.._,), Ni= nl(Zl...o...I) (0 in the ith place, 1 everywhere else), Siand biare given 

by the face maps in direction i. 

2.15. Lemma. Let X be an n-cube of fibrations, then Y(X) = (G; IV,, . . . . IV,) as 
defined above is an n-cat-group. 

Proof. The group Ni is identified with a subgroup of G via the degeneracy map in 
the direction i. The verification of axioms (i) and (ii) goes back to the case n = 1 
(Lemma 2.7). 
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In a multisimplicial set the faces in two different directions commute. As si and b; 
are induced by faces in direction i they commute with s, and b, provided i #j. This is 
axiom (iii). 0 

2.16. Proof of property (a). Mimicking the construction of To introduced in 2.8 we 
define 

&“@=(N;;N,flN, ,..., N, ,..., N,nN,), 

c.:-‘=&;’ and rU=~,ar.....r~_ 

For ai= -1 or 0 the functor rj* transforms any n-cat-group into an n-cat-group 
(G’; N;, . . . . NA) such that G’= Ni. Therefore, if a SO, P transforms @ into an n- 
cat-group of the form (n; z, . . . . n) whose classifying space is of type K(rc, 1). 

As Sl”=@ is homotopy equivalent to BP@ (see 2.8) property (a) is proved. 0 

2.17. Corollary. The classifying space BC3 of the n-cat-group C3 is (n + 1)-co- 
connected. 

Proof. By induction on n, use of the fibrations 

BFi-‘@ - Sri”@ - Bc’@ 

proves that if 1 occurs k times in a= (a,, . . . . a,) then n;BP&=O for i>k + 1. 0 

2.18. Proof of property (b). To prove that %(a@)=@ we first compute nlZII..., 
where Z, is the n-simplicial space associated to .S@. When replacing each fibration 
in the n th direction by a simplicial space we obtain a simplicial (n - I)-cube of fibra- 
tionsg such that (~oo”‘o), = B(G; G, . . . . G) = BG (see 2.11). Finally we find the n- 
simplicial space Z, with Z,r I = BG. Therefore n,(Z,, r) = G. Similary we have 
n,(Z, ...o...I) = Iv, and then Y(O@) = (3. Cl 

2.19. Proof of property (c). Let A: be an n-cube of fibrations. We first construct a 
map Xrr”.’ + B V(X), well-defined up to homotopy, which induces an isomorphism 
on rr, . The n-simplicial space Z, associated to X has the property that IZ,I is homo- 
topy equivalent to X1’““. Then, if we replace each space in Z, by its fundamental 
group, we obtain an n-simplicial group. This n-simplicial group is the same as the n- 
simplicial group (Y(X)), obtained from U(X) (see 2.11). Therefore there is an n-sim- 
plicial map Zf-+ B(Y(@)), which induces an isomorphism on rrl at each level. 
Taking the geometric realization gives the desired map 

T”‘.“=IZ#I - IB(Y(X)),I =BY(W). 

To construct the morphism X + BY(X) we define ya: (n-cubes of fibrations) + (n- 
cubes of fibrations) by ya = yp’ o *-- o y,““. 

Note that Yyn=raY. The definition of yn implies Wa=(yuW)tl..-*, therefore 
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the maps Xa=(yU’x)““” + BY(y=X)ii”‘i= BP:$((X) give the desired morphism 

X+2@(X). q 

3. Complexes of non-abelian groups and q(B@) 

The object of this section is to construct a complex of groups C*(t%) whose 
homology groups are the homotopy groups of B8. This is analogous to the con- 
struction of the Moore complex of a simplicial group whose homology is the homo- 
topy of the geometric realization of the simplicial group. 

A complex of (non-abelian) groups (C,, d*) of length n is a sequence of group 
homomorphisms 

d,- I C, dn C,_ - . . . dl 
I - co 

such that Im di+’ is normal in Ker d;. Therefore the homology groups H;(C,) = 
Ker dJIm d; + , are well defined (we assume C; = 1 for i < 0 or i > n). It is in general 
not possible to define a mapping cone of a morphism f: (A*, d*) 4 (B,, dS) of two 
complexes (it is possible, of course, if all the groups are abelian). However we will 
show that it is possible if there is some extra structure. 

3.1. Definition and Lemma. Letf: (A,, d+) + (B,, di) be a morphism of complexes 
such that A : Ai+ Bi is a crossed module (i.e. there is given an action of Bi on Ai 
satisfying the two conditions of 2.1) and such that the maps (di, dj) form a mor- 
phism of crossed modules. Let Ci be the semi-direct product Ai_, M Bi where the 
action of Bi on At_ I is obtained through df and the action of Bi_ l on Ai_ I (crossed 
module structure). If we define 6i+ 1: Ci+ I+ Ci by 

ai+l(x,Y)=(di(x)-‘,5(x)dI+l(y)), xEAi, YEBi+l, 

then (C,, d,) is a complex of (non-abelian) groups which is called the mapping cone 

off. 

Note that if (A*, d,) and (B,, d;) are of length n, then 

(C*,d*): A~~A,_*>QB,-)...-*A~_I>~B~~...-)A~>QBI~B~ 

is of length n + 1. 

Proof. To show that 6i+, is a group homomorphism it is sufficient to show that 

6i+i(X* 1)6i+l(X: l)=~i+*(XX’* 1) 

and that 
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We omit the indices for the computation: 

6(x, 1)4x’, 1) = (d(x)-‘, f(x))(d(x’)-‘9 f(x’)) 

= (d(x)-’ &J@‘“‘d(X’)_‘, f(x)f(x’)). 

As d’f(x) =fd(x) and as the action of fd(x) is given by conjugation of d(x) (axiom 
(b) of crossed modules), we have 

6(x, 1)6(x’, 1) = (d(x’)-‘d(x)_‘, f(x)f(x’)) =6(xX’, 1). 

To prove the second formula we write 

41, Y)4X 1) = (1, d’(y))(4x)-‘, f(x)) = (d(x)-‘, d’(Y)f(X)), 

(because d’* is trivial). On the other hand, use of the fact that (d, d’) is a morphism 
of crossed modules gives 

a(“‘(“)~, y) = (d( S(“)~)-l, f(d”“‘x)d’(y)) = (d(x)-‘, d’(y)f(x)). 

For the last equality we used axioms (a) and (b) for crossed modules. So we have 
proved that 6 is a group homomorphism. 

It is easily checked that Im di+, is normal in Ker ai and therefore the homology 
groups of the mapping cone are well defined. G 

3.2. Proposition. Let f: (A*, d*) + (B,, dk) be a morphism of complexes satisfying 
the conditions of Lemma 3.1. Then there is a long exact sequence 

**- + Hi(A*) + H;(B*) + H;(C*) + Hi_ ,(A*) + *** 

where C, is the mapping-cone complex off. 

Proof. Two out of three of the maps are induced by morphisms of complexes. As for 
the third (the boundary map) we use the projection Ai_ I >Q B; + A;_ i, (x, y) - x-‘. 
This is not a group homomorphism, however its restriction to the subgroup of cycles 
is a group homomorphism. The rest of the proof is by standard diagram chasing. 0 

3.3. The (non-abelian) group complex of an n-cat-group. The complex C*@): 

associated to an n-cat-group @ is constructed by induction as follows. Let (D,, 8,) 
be a complex of groups and suppose that each group Dj has a categorical structure, 
that is %i = (Di; Bi) is a categorical group and the homomorphisms 8i are morphisms 
of categorical groups. Then (D,, a,) is called a complex of l-cat-groups. As a l-cat- 
group is equivalent to a crossed module (Lemma 2.2) (a,, a,) gives rise to a 
morphism of complexes which satisfies the condition of Lemma 3.1. Hence from 
any complex of l-cat-groups of length n the construction above gives a complex of 
groups of length n + 1. It is immediate to remark that if (Q*, a,) is a complex of 
n-cat-groups then the new complex is a complex of (n - l)-cat-groups (because of 
axiom (iii) for n-cat-groups). 
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Let B be an n-cat-group. Looking at it as a O-complex of n-cat-groups and 
applying the preceding construction inductively (n times) we obtain an n-complex of 
O-cat-groups, that is a complex of groups of length n denoted (C*(a), 6,). 

3.4. Proposition. For any n-Cal-group 6 the homotopy groups of the classifying 

space B@ are rhe homology groups of the complex C,(a), i.e. n;(B@) = Hi- ,(C,(@)). 

Proof. This is obvious for n =O. For n = 1 it follows from the fact that the homo- 
topy exact sequence of the homotopy fibration BM- BN- B@ (see 2.5 and 2.8) is 

l-n_lB~-M~N-n,B@-l 

and that the complex C,(a) is A43 N. 
Proceeding by induction, we suppose that the proposition is true for n - 1 and we 

will prove it for n. 
From any n-cat-group @ we constructed in 2.11 an n-simplicial group (a,)#. Let 

diag(@)# be the diagonal simplicial group, then the geometric realization of 
diag(@), is homotopy equivalent to RBC.3. Hence the homology groups of the 
Moore complex C$‘(t3) of diag(@), (see [9]) are the homotopy groups of B@ (up to 
a shift of index). We shall shortly prove that there is a natural morphism of com- 
plexes &(a) : CiW(@) - C,(B). We first prove that it necessarily induces an isomor- 
phism in homology, i.e. is a quasi-isomorphism. 

Firsf step. If 1 -+ a’- t3 -+ a”- 1 is a short exact sequence of n-cat-groups and if 
two of the morphisms E(@‘), E(@), ~(a”) are quasi-isomorphisms then so is the third. 
This is a consequence of the five lemma. 

Second step. If @ is of the form (M >aM; Nt, . . . . N,,- ,, M) then E(@) is a quasi- 
isomorphism. This is because, in this case, B@ is contractible and C,(B) is acyclic. 

Third step. If @ is of the form (G; Ni, . . . . N,, _ ,, G) then &(a) is a quasi-isomor- 

phism. This is because C&) = C*((G; Nt, . . . , N,, _ i)) and B@ = B(G; NI, . . . . N, - I) 
and the induction hypothesis. 

Fourth step. From the short exact sequence of n-cat-groups 

1 - (M,>aM,;-,-, . . ..M.) - r,“a - r,“a - 1 

and the steps 1, 2 and 3 it follows that e(~~@)) is a quasi-isomorphism. 
Last step. From the short exact sequence 1 + ri’@ ---) f,“B + @ -+ 1, step 1, step 3 

(for &‘@) and step 4 (for I-,“@) it follows that e(a)) is a quasi-isomorphism. 
It remains to show the existence of e(B) : C:(a) -+ C,(a). Let U, = (V+ >Q K, K) 

be a simplicial l-cat-group. There are two kinds of complexes which can be con- 
structed. Taking the Moore complex gives rise to a complex of l-cat-groups (Or Of 
crossed modules) and then applying the mapping cone construction gives rise to a 
complex of groups 

*** - Vz’>a w; - v;>a w; - V-cXI w; - we (*) 

where VL is the subgroup n:=, Ker di’ of V, and similary for Wi (Here di’ is the ith 
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face map V,, -* V,, _ ,). On the other hand, converting the categorical structure into a 
simplicial structure (Lemma 2.2) transforms U* into a bisimplicial group (U,,). The 
simplicial group diag CJ** is 

Its Moore complex is the second complex we are looking for. There is a morphism 
of complexes from this Moore complex to the mapping cone complex given by 

(VI, 0.2, **a, u,; w) - (6SJ”, w) 

in degree n. 
If we start with a simplicial n-cat-group, then this construction gives a morphism 

of complexes of (n - I)-cat-groups. To get the morphism E(@) we start with @ con- 
sidered as a (trivial) simplicial n-cat-group and we apply the above construction n 
times. Finally we get a sequence of n morphisms of complexes. The first complex is 
the Moore complex of diag(@), , that is CF(@) and the last one is C,(@). The com- 
position of these n morphisms gives the desired e(a). 0 

To complete the proof of Theorem 1.7 we need the following 

3.5. Lemma. There is a functor, well-defined up to homotopy, from the category 
of (n + I)-coconnected spaces into the category of n-cubes of fibrations Ii such that 
X” is a K(n, 1) then al 0 and such that the image X of X verifies X1’“” =X. 

Proof. Let F be the free group on the elements of n,(X). Then there is a fibration 
BFd X inducing the obvious projection on TIN. 

Put O-IX = fiber(BF*X), O”X = BF and 0 ‘X=X. The spaces O-IX and @OX 
have trivial homotopy groups rri for i > n. Then we can define an n-cube of fibra- 
tions X by X”=OarO~~~~@+X for a=(a,, . . . . a,), a;=-l,O, or 1. As O’=id, we 
have xti...t= @I 0...0@‘X=X* 0 

End of the proof of Theorem 1.7. The functor B (cf. 2.11) from the category of 
n-cat-groups to the homotopy category of (n + l)-coconnected spaces factors 
through the category of fractions (n-cat-groups)(Z*) because of Proposition 3.4, 
Whitehead’s theorem and the universal property of a category of fractions (cf. [3]). 

Its inverse is given by the composite of the functor described in Lemma 3.5 with 
the functor 3 defined in 2.14. 0 

4. Group-theoretic interpretation of cohomology groups 

A well-known theorem of Eilenberg and MacLane [IO, Ch. 4, Theorem 4.11 
asserts that the set of extensions of a group Q by a Q-module A is, up to congruence, 



194 J.-L. Loday 

isomorphic to the second cohomology group H*(Q; A). The aim of this section is to 
use the previous results to extend this theorem in three different directions. First we 
replace 2 by n and get an interpretation of H”(Q; A). In terms of topological spaces 
we have H”(Q; A) = H”(K(Q, 1); A), the next generalisation consists in replacing 
K(Q, 1) by an arbitrary Eilenberg-MacLane space K(C, k) where C is an abelian 
group. Finally we give a group-theoretic interpretation of some relative and ‘hyper- 
relative’ cohomology groups. 

4.1. Interpretations of H”(Q;A). Let Q be a group and A a Q-module. For n r2 
the set yY”(Q; A) consists of the triples ((8, cp, ‘?u) where @ is an (n -2)-cat-group 

rp:A -n; Ker S; = C,, -2(B) and Y : Co(@) = ‘ti Xi - Q 
r=, 

are group homomorphisms subject to the following conditions 
the sequence 

1 -A “. C,,-2(@) dn-2 Cn-j(0)) -...A C&j) ZQ-1 

is exact, 
for anyxECa(@)and anyaEA, ~o(Y(x).a)=xax-I. 

The complex (C,(@),J*) is the complex constructed in 3.3. 

Remark. By Proposition 3.4, when n z 3 the first condition implies that ntB@ = Q, 
71, _ ,(B@) = A and ni(B@) = 0 for i # 1, n - 1. The second condition asserts that the 
module structures on R,_ ,(B@) and A agree. Two triples @, V, p) and (a’, cp’, Y’) 
are said to be congruent if there exists a morphism of (n -2)-cat-groups f: @ + (3,’ 

such that the following diagram commutes: 

9 
l-A- C,_,(~) 2% 

61 
*** - C&3) -Q-l 

! f* 
9’ l-A- C,_,((Jj’) -55 . . . -Q-l 

The Yoneda equivalence on 9”‘(Q; A) is the equivalence relation generated by the 
congruence relation. 

4.2. Theorem. There is a one-to-one correspondence between the cohomologygroup 
with coefficients H”(Q; A) and the set of equivalence classes ?“(Q; A)/( Yoneda 
equivalence) for n 12. 

Remark. For n = 2 a triple is just a short exact sequence 1 +A + G - Q + 1 and this 
theorem is Eilenberg and MacLane’s theorem. For n = 3 a triple is equivalent to an 
extension 

I-A-M-k+--+Q-1 
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where ZA is a crossed module. Under this form Theorem 4.2 was proved by several 
people (see [I l] for references). 

Proof of Theorem 4.2. We suppose n L 3. Let (a, 9, Y) be an element of 2 “(Q; A). 
The space B@ has only two non-trivial homotopy groups, and therefore it has only 
one non-trivial Postnikov invariant, which lies in H”(ntB@; n,_lB@). The 
morphisms 9 and Y permit to identify this group to H”(Q;A). The image of the 
Postnikov invariant defines a map Y’“(Q;A) -H”(Q;A). If (@,, 9, Y) and 
(@‘, 9: Y’) are congruent there is a map B@ -, B@’ which induces an isomorphism 
on homotopy groups. Therefore this map is a homotopy equivalence and the two 
spaces have the same Postnikov invariant. Hence the ‘Postnikov invariant’ map 
yn(Q; A)/- - Zf”(Q; A) is well defined. 

Let a E H”(Q; A) and let X be a space (well-defined up to homotopy) such that 
nix=0 if i#l and n-l, rr,X=Q, n,_tX=A as a Q-module and a=Postnikov 
invariant of X. By Lemma 3.5 and Theorem 1.4 there exists an (n -2)-cat-group @ 
such that B@ is homotopy equivalent to X. Therefore we have an element (a, 9, Y) 
where 9 is the natural inclusion of n,B@ into C,_,(@) and Y is the projection of 
Cc(@) onto ntB@. If ($5)’ is another (n-2)-cat-group, then there exists a homotopy 
equivalence B@ + B@‘. It need not come from a morphism @ -, (8’. However, by 
fiber product, we can construct an (n-2)-cube of fibrations g (with ga=K(rr, 1) for 
a ~0) and morphisms J@ + g --) .&8’ such that B@ + g’* “’ * + B@’ are homotopy 
equivalences. Therefore there exist morphisms @ + :5(g) + @’ which prove that GJ 
and a,’ are Yoneda equivalent. 

Thus the map H”(Q;A) + Y’“(Q;A)/(Yoneda equivalence) is well defined. It is 
immediate that this map is an inverse for the ‘Postnikov invariant’ map. 0 

Theorem 4.2 may remain valid when we replace the set .Y”(Q;A) by some par- 
ticular subset. This is the case when we impose the following condition on (8): 
- there are inclusions N,cN~c~~+cZV,,_~. 

This will give a ‘more abelian’ group-theoretic interpretation of H”(Q; A) already 
found by several authors [5,6,7]. 

4.3. Lemma. Let X be a space with only non-trivial n, and z,+ I-groups. Then there 
exists an n-cat-group @ such that B@ is homotopy equivalent to X and such that 

N,CN*C***CN,. 

Proof. The group A = rr,, + , X is a rrt X-module. Let i : rr,,, , X-+Z be an inclusion of 
n,, ,X into an injective n, X-module I. The injectivity of Z ensures the existence of a 
map X-K(Z, n + 1) inducing i on rr,+ I. The fiber of this map is a space X(I) with 
only non-trivial n, (= rriX) and IZ,, (=Z/A). Continuing this construction gives a 
sequence of maps 

X’“- I) R g,_l XW-2) g,_2 . . . A X(1’ gl - X’O’=X 
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where X(‘) has only non-trivial rrl and n, + , _ ;. Finally we define g, : Xc”) = BF + 

X(*-‘) as in the proof of Lemma 3.5. Working up to homotopy permits us to 
assume that the gi are fibrations. The n-cube of fibrations X is defined by 
Pi”‘@ - 1 O I’ .‘. * =X@), the maps being either identities or composite of g,‘s. Example 
for n=3: 

X(3, 

I 

! 
X(2’ = 

\ gz i 

g2g3 I 
X(2) 

\ 
gl g2 

g,g2g3 

* 
L X(I) 

gl 
, X(0’ 

The n-cat-group Y(X) has the required properties. 0 

4.4. Definition. An n-fold extension of the group Q by the Q-module A is an exact 
sequence of groups 

1 -A LK,_* % Kn_2 - . . . AKoLQ- 1 (w) 

where the Ki are Q-modules and the ri module-homomorphisms for i> 1 and where 
7] is a crossed module. 

A l-fold extension is just an extension of groups and a 2-fold extension is a 
crossed module. 

Two n-fold extensions of Q by A are said to be congruenf if there is a morphism 
from one to the other inducing the identity on A and on Q. The Yoneda equivalence 
is the equivalence relation generated by congruence. 

4.5. Corollary. (Hill 151, Holt [6], Huebschmann [7]). The cohomology group 
H”(Q; A) is in one-to-one correspondence with the set of equivalence classes of 
(n - I)-fold extensions. 

Proof. From Theorem 4.2 and Lemma 4.3 it suffices to show that a triple ((9, V, !P) 
where @ is an (n -2)-cat-group satisfying Nt C N2C ... C Nn_2 is equivalent to an 
(n - l)-fold extension of Q by A. 

The (n - 1)-fold extension obtained from (a, p, Y) is 



Spaces with finitely many non-trivial homotopy groups 197 

On the other hand the (n -2)-cat-group is constructed from the n-fold extension (**) 
as follows: 

N,=Ko, Nz=K,~N,; . . . . N,,_,=K,_,>aN,,_,, G=K,_2~N,_2. 

The action of Ni on Ki is obtained via the projection of N, onto N, =KO (which acts 
on Ki). The structural morphisms are given by 

Si(ki_*,ki_2,...,ko)=(ki-*,...,kg), 

bi(ki_t,ki-2,ki-j, s*** ko)=(Ti_*(ki_l)ki_~,ki_,,...,ko). 

The equivalence is clear. 0 

Example. It is well known that the group N”(Z”; E) is infinite cyclic. We construct 
an (n - I)-fold extension whose invariant is a generator of this cohomology group as 
follows. Define 

*.* - zxz 
TI c HxZn-2 -2-b Z” - 1 

by r,_t(a)=(a,O), ri(U, u)=(u,O) for n-2~is2, H = Heisenberg group, i.e. H= 
ZxZxZ as a set and 

(I, m, p)(l’, m’, p’) = (I + I’+ mp’, m + m’, p +p’), 

T,(U,U)=(u,0,0;0 ,..., 0) 
and 

TOG m, P;aba2, .,.,a,-d=(m ~~4, ..-.a,-d- 

The group HCH X Z"-' acts trivially on all the groups Z x Z. The ith generator of 
the factor Z"-2~H~Z"-2 acts trivially on all the groups Z XZ but the ith one 
where it acts by (a, b) - (a + b, 6). One can verify that this is an (n - I)-fold exten- 
sion of Z” by the trivial module H and that its invariant generates H”(Z”; Z). 

Interpretation of H”(K(C, k);A). Let A and C be abelian groups. The set 
P((C, k); A) consists of the triples (@,,c+ ‘P) where @ is an (n - 2)-cat-group, p is an 
isomorphism between Hk(C*(oi)) and C and Y is an isomorphism between 
Hn-~(C,@)) and A. Moreover we assume that H,(C*(@))=O if i#k and n - 1. 
There is a Yoneda equivalence defined as in 4.1. 

4.6. Theorem. There is a one-to-one correspondence between the cohomology 
group H”(K(C, k); A) and the set G “((C; k), A)/(Yoneda equivofence) for n > k. 

Proof. The proof is similar to the proof of Theorem 4.2 and is left to the reader. 0 
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4.7. Interpretation of H2(.4’@; A). Let X : (0, 1)” 4 (spaces) be an n-cube of fibra- 
tions. It can be viewed as a morphism between two (n - I)-cubes of fibrations !J) and 
3, i.e. X : g -* jj where 

~al...a,_I=~al...cr,_IO and ~3al...(m-1=Xal...an-ll 

The cone of an n-cube of fibrations is defined by induction as follows. For n = 0, 
CX = f (which is merely a space). If Cg (resp. Cd) is the mapping cone of g (resp. d), 
then CX is by definition the mapping cone of the map CQ + Cd. From the con- 
nectedness of the spaces in X (namely the fibers) it follows by Van Kampen’s 
theorem that CX is simply connected (for n 11). 

4.8. Definition. The homology (resp. cohomology) groups of the n-cube of fibra- 
tions A: with trivial coefficients in A are Hi(X; A) = H,,+i(CX; A) (resp. H’(X; A) = 

H”+‘(CX; A)). 

From this definition it follows that there is an exact sequence 

*** - Hi(X;A) - Hi(‘l);A) - Hi(d;A) - Hi- 1(3l;A) - *** 

and similarly in cohomology. 
Let (3 (resp. A) be a fixed n-cat-group (resp. abelian group). We are now con- 

cerned with the set Opext(@; A) of extensions of n-cat-groups of the following type 

1 - (A; 1,1, . ..) 1) -R-@-l 

which are central, i.e. the group A maps into the center of K. Two such extensions P 
and 9 are said to be congruent if there is a morphism f of n-cat-groups making the 
diagram 

1 - (A; 1, 1, . . . . 1) -j?-(3-1 

1 - (A; 1,1, . . . . 1) -$‘-B-1 

commutative. 

4.9. Theorem. There is a one-to-one correspondence between H2(.%‘@;A) and 
Opext(@, A)/(congruence). 

Proof. By Theorem 1.2 the set Opext(t3, A)/(congruence) is in one-to-one corres- 
pondence with the homotopy classes of fibrations 

&‘(A; 1. 1, . . . . 1) - S?$ - 9’6 

where A and (3 are fixed. By obstruction theory these diagrams are classified, up to 
homotopy, by the cohomology group H”+2(C.3’@; A) = H2(98; A). 0 
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Example. Let v : N- Q be a group epimorphism with kernel V and let A be a Q- 
module. The inclusion V-N is a crossed module whose corresponding l-cat- 
group is (V M N; N). The fibration .n( V M N; N) is BY 4 BN -, BQ and the group 
H2(.?A(V~N; N);A) is the relative cohomology group H3(Q, N;A) which fits into 
the exact sequence 

. ..~H2(N.A)~H2(Q;A)~H3(Q,N;A),H3(N;A)-)H3(Q;A)~... 

An extension of ( V>Q N; N) with kernel (A; 1) is equivalent to a crossed module of 
the following form 1 -A -MAN -% Q - 1, i.e. such that N+Coker,~ is 
precisely v. Such an object was called a relative extension in [8]. Therefore Theorem 
4.9 asserts that the set of relative extensions of v with kernel A modulo congruence 
is in one-to-one correspondence with H3(Q, N; A). This result was proved in [8, 
Theorem l] by explicit cocycle computations. 

One can combine the ideas of 4.1 and 4.3 to obtain an interpretation of the groups 
H’(.d@;A) for any i. This is left to the reader. 

As a consequence of 4.9 we will prove a result which we use in [4] for n = 2. 

4.10. Proposition. Let $ + @ be a central extension of n-cat-groups with kernel 

(A; 1, 1, . . . . 1). If Hi(S@; H) = 0 for is2 and if the group K is perfect then this 
extension is an isomorphism, i.e. A = 1. 

Proof. From the hypotheses H,(.+?@); A) = H2(.3@; A) =0 and the universal coeffi- 
cient theorem we get H2(9@; A) = 0. By Theorem 4.9 this implies that the extension 
is congruent to the trivial extension, and therefore splits. The extension of groups 
1 + A + K + G + 1 is central and splits, so K is isomorphic to A x G. The abelianiza- 
tion of K is A x Gab and K is perfect, therefore A = 1. 0 

In fact Theorem 4.9 allows one to develop a whole theory of universal central 
extensions of n-cat-groups in the same spirit as what was done for groups by 
Kervaire in [14] (resp. for crossed modules in [8]). Proposition 4.10 is part of this 
theory. 

5. Crossed squares and 2-cat-groups 

Lemma 2.2 which describes a l-cat-group in terms of a crossed module (resp. a 
category, resp. a simplicial group) has an analogue for any n. We implicitly used it 
when we described in 2.11 the simplicial group K, associated to the n-cat-group 8. 
The description in terms of categories can easily be made by using the notion of 
n-fold category. 

Finding the analogue of crossed modules for higher n is more complicated. We 
will give such a description for n = 2. Another group-theoretic description of ~-CO- 
connected spaces was obtained by Conduche [2]. 
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5.1. Definition. A crossed square is a commutative square of groups 

LAM 

A’ ! I P 

flu’ 
M’- P 

(*) 

together with an action of P (resp. P, resp. P, resp. M, resp. M’) on L (resp. M, 
resp. M’, resp. L, resp. L) and with a function h:MxM’+L satisfying the 
following axioms 

(i) the homomorphisms I, ,I’, p, p’ and K = pi = p’A’ are crossed modules and 
the morphisms of maps (A) -+ (K); (K) + (p), (A’) + (K) and (K) * (flu’) are morphisms 
of crossed modules, 

(ii) Ah(m, m’) = m J“@‘)rn-’ and I’h(m, m’) = p(m)m’m’-l, 
(iii) h(A(l), m’) = Irn~-’ and h(m, A’(!)) = “‘II-‘, 

(iv) h(m,m2, m’)=“~h(mz, m’)h(m,, m’) and h(m, m;mi) = h(m, m;)“‘ih(m, mi), 
(v) h(“m, “m’) = “h(m, m’), 

(vi) m(m’/)h(m, m’) = h(m, m’)““(“Y), 
for all m,m,,m2EM, m’,m;,miEM’and /EL. 

A morphism of crossed squares is a commutative diagram 

+ p2 

such that the oblique maps are 
and h2. 

compatible with the actions and the functions hi 

5.2. Proposition. The category 
crossed squares. 

of 2-cat-groups is isomorphic to the category of 

Proof. Let B=(G;Nr,Nz) be a 2-cat-group. Define L = Ker sI fl Ker ~2, M = 

N, n Ker s2, M’= Ker sI fI N2, P = N, fl N2 and A = restriction of 6, to L, A’ = restric- 
tion of b2 to L, p’ = restriction of b, to M, p = restriction of b2 to M’. If m is in M 
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and m’ is in M’ then the commutator [m, m’] is in L therefore the function 
h : M xM’-+ L, h(m, m’) = [m, m’] is well defined. The equality .uA =p’A’ follows 
from 6rb2= &b,. Using the equivalence of l-cat-groups with crossed modules we 
easily prove axiom (i) of 5.1. The other axioms are also easily verified: it suffices to 
compute in G, replacing h(m, m’) by the commutator and all the actions by conjuga- 
tion. 

We will now construct a 2-cat-group from a crossed square. First there are semi- 
direct products L xM’ and Mx P. We define an action of MxP on L xM’ as 
follows: 

(m, p) . (I, m’) = (me (p . I) h(m, p. m’), p - m’). 

Use of the axioms (iv), (v) and (vi) of 5.1 shows that this action is well defined. Put 
G=(LxIM’)x(M>QP), N,=M>aP, s1 = projection on M>dP and define bt by 
bt(l, m’, m, p) = (I(l)p'(m') . m, p’(m’)p). Then (G; N,) is a l-cat-group. 

We can switch the role of M and M’, that is we can define an action of M’ >Q P on 
L x M such that G is canonically isomorphic to (L >a M) >Q (M’ >4 P). Similary there is 
a l-cat-group (G; N2) with Nz = M’ >Q P. These two categorical group structures on G 
commute because ~1 =&A’. Thus we have constructed a 2-cat-group. 

These two constructions are inverses of each other. 0 

5.3. Application. Let ~1: M-* N be a group homomorphism. It is well known that 
the necessary and sufficient condition for the existence of a fibration K(M; 1) -* 
K(N, 1) -+X inducing p is that there exists an action of N on M making p into a 
crossed module. Similarly we have the following result. 

5.4. Proposition. Let 
1 

L-M 

(*) 

be a commutative square of groups. A necessary and sufficient condition for the 
existence of a diagram of fibrations 

KG, 1) - K(M, 1) - X 

I I I 
K(M’, 1) - K(P, 1) - Y 

I 
X’ 

,! 1 
Y’ - z 

inducing (*) is the existence of a crossed square structure on (*). 
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Proof. If (*) is a crossed square, then by Proposition 5.2 there is associated a 2-cat- 
group (3. The 2-cube of fibrations SC3 is the desired diagram because A?@)-‘*-~ 
(resp. 9@)-‘*O, resp. l@“*-‘, resp. %@O*O) is equal to BT-‘*-‘@ =B(L; L, L) = 
BL (resp. Bf -l*o@ = B(M’; M: M’) = BM’, resp. BT”*-‘t3 = B(M; M, M) = BM, 
resp. Bf O*O@ = B(P; P, P) = BP). 

On the other hand, if we start with a 2-cube of fibrations X then by 2.15 and 5.2 
the commutative square 

is a crossed square. 0 

Acknowledgement 

I wish to thank L. Evens who spent hours to hear me and D. Guin-Walery, M. 
Zisman and K. Brown for helpful conversations. I am also grateful to the Mathema- 
tics Department of Northwestern University for its hospitality while this work was 
being done. 

References 

[l] R. Brown and C.B. Spencer, G-groupoids, crossed modules and the fundamental groupoid of a 
topological group, Proc. Kon. Ned. Akad. 79 (1976) 296-302. 

[2] D. Conduche, Modules croises generalises de longueur 2, en preparation. 
[3] P. Gabriel and M. Zisman, Calculus of fractions and homotopy theory, Ergeb. Math. (Springer, 

Berlin, New York, 1967). 
[4] D. Guin-Walery et J.-L. Loday, Obstruction a I’excision en K-theorie algebrique. in: Evanston Con- 

ference, 1980, Lecture Notes in Math. No. 854 (Springer, Berlin-New York, 1981) 179-216. 
[S] R.O. Hill, A natural algebraic interpretation of the group cohomology group H”(Q,A), n 24, 

Notices A.M.S. Vol. 25, No. 3 (1978) p. A-351. 
[6] O.F. Holt, An interpretation of the cohomology groups H”(G,M), J. Algebra 60 (1979) 307-318. 
[7] _I. Huebschmann, Crossed n-fold extensions of groups and cohomology, Comment. iMath. Helvetici 

55 (1980) 302-314. 
[S] J.-L. Loday, Cohomologie et groupe de Steinberg relatifs, J. Algebra S-1 (1978) 178-202. 
[9] J.P. May, Simplicial Objects in Algebraic Topology, Van Nostrand Math. Studies (New York, 

1967). 
[IO] S. MacLane, Homology, Grund. Math. Wiss., Bd 114 (Springer, Berlin, 1963). 
[I l] S. MacLane, Historical Note, J. Algebra 60 (1979) 319-320 (Appendix to [6]). 
[12] W. Shih, Homologie des espaces fib&, Publ. I.H.E.S. 13 (1962) 91-175. 
[13] J.H.C. Whitehead, Combinatorial homotopy II, Bull. A.M.S. 55 (1949) 453-496. 
[14] M. Kervaire, Multiplicateurs de Schur et K-theorie, in: Essays on Topology and Related Topics; 

MCmoires dedies a G. de Rham (Springer, Berlin-Heidelberg-New York, 1970) 212-225. 


